Learning Target: I can define types of angle pairs and use their properties to find missing measurements and solve problems.



 

Angle Pairs


Definitions




Example 1

∠1 and ∠2 are complementary, and m∠2 = 32°. Find m1.

Solution

m∠1 + m∠ 2 = 90°     Definition of complementary angles

m∠1 + 32° = 90°           Substitute 32° for m∠2. 
m∠1 = 58°                    Subtract 32° from each side.




Vertical Angles

When two lines intersect at a point, they form two pairs of angles that do not share a side. These pairs are called vertical angles, and they always have the same measure.

 

∠1 and ∠3 are vertical angles.
m∠1 = m∠3

∠2 and ∠4 are vertical angles.
m∠2 = m∠4


Perpendicular Lines

When two lines intersect to form one right angle, they form four right angles. Two lines that intersect at a right angle are called perpendicular lines.


Example 2

Find m∠2, m∠3, and m∠4.


Solution
The diagram shows that m∠1 = 90
°.
∠1 and ∠3 are vertical angles. Their measures are equal, so m∠3 = 90
°.
∠1 and ∠2 are supplementary.


m∠1 + m∠2 = 180°      Definition of supplementary angles 
90° + m∠2 = 180°           Substitute 90 for m1. 
m∠2 = 90°                      Subtract 90 from each side.


∠2 and ∠4 are vertical angles. Their measures are equal, so m∠4 = 90°. 

m∠2 = m∠3 = m∠4 = 90°



Parallel Lines

Two lines in the same plane that do not intersect are called parallel lines. When a third line intersects two parallel lines, several pairs of angles that are formed have equal measures.

Corresponding Angles:   m∠1 = m∠5;  m∠2 = m∠6; 
                                           m∠3 = m∠7;  m∠4 = m∠8

Alternate Interior Angles: m∠3 = m∠6;  m∠4 = m∠5 

Alternate Exterior Angles: m∠1 = m∠8;  m∠2 = m∠7


Example 3

Use the diagram to find m∠1.     


Solution
∠1 and ∠5 are corresponding angles, so they have equal measures. 
Find m∠5. The angle with measure 125° and ∠5 are supplementary.


m∠5 + 125° = 180°         Definition of supplementary angles 
m∠5 = 55°                       Subtract 125° from each side.


∠1 and ∠5 have equal measures, therefore m∠1 = 55°.




Let's Practice Together

Are ∠1 and ∠2 are complementary, supplementary, or neither?

1.  m∠1 = 79°
     m∠2 = 101°

 



2.  m∠1 = 53°

     m∠2 = 47°




Find the measures of the numbered angles.

3.       

 


Your Turn

Find the measures of the numbered angles.

4.   

  



Find each angle measure.   

  

5.  m∠2



6.  m∠3



7.  m∠4

 


8.  m∠6



Complete the statement.
9.  The sum of the measures of two _?_ angles is 180°.

 

10.  Two lines that intersect to form a right angle are called _?_.



Are the angles complementary, supplementary, or neither?

11.  m∠1 = 95°, m∠2 = 85°


12.  m∠1 = 52°, m∠2 = 38°


13.  m∠1 = 62°, m∠2 = 118°

 

14.  m∠1 = 51°, m∠2 = 39°

 


Describe and correct the error in the solution.

15.   

       

m∠2 = 68°, because vertical angles add up to 180°.

 


Check for Understanding

Find the value of the variable and the angle measures.

 

1.  m∠1= (5x + 15)° and m∠2 = 28x°

 


2.  m∠4 = (7n + 39)° and m∠5 = (11n − 13)°

 


3.   Find the angle measures in the weaving if m∠1 = 122°.   

 


4.   A student designed the stationery border shown here. Explain how to find m∠2 if m∠1 = 135°.

















Answers

1.  supplementary

2.  neither

3.  m∠9 = 126o; m∠10 = 54o; m∠11 = 126o

4.  m∠6 = 43o; m∠7 = 137o; m∠8 = 43o

5.  85o

6.  95o

7.  85o

8.  85o

9.  supplementary

10.  perpendicular

11.  supplementary

12.  complementary

13.  supplementary

14.  complementary

15.  Vertical angles are congruent, so m∠2 = 112o.

Check for Understanding

1.  5

2.  13

3.  m∠2 = 58o; m∠3 = 122o; m∠4 = 58o

4.  Angles 1 and 2 form a linear pair and are supplementary.  So to find m∠2, subtract m∠1 from 180om∠2 = 180o - 135o = 45o.